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Abstract

Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the
local resolution of the computational grid to the numerical solution being sought have £merged as
powerful tools for solving problenis that contain disparate length and time scales. In particular,
several workers have demonstrated the effectiveness uf employing an adaptive, block-structured

hierarchical grid system for simulations of complex shock wave phenomena. Uni'rtunately, from
the parallel algorithm developer's viewpoint, this cla,% of scheme is quite involved; these schemes

cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested.
However, because of their block-structured nature such schemes are inherently parallel, so all is not
lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized.
This method is built upon just a few simple message passing routines and so it may be implemented
across a broad class of MIMD machines. Moreover, the method of paralielization is such that the
original serial code is left virtually intact, and so we are left with just a single product to support.
The importance of this fact should not be underestimated given the size and complexity of the

original algorithm.

While the parallel version currently lacks some of the advanced features of the serial version,

;t is sufficiently mature that it can be used routinely to perform very large scale simulations of

detonation phenomena using workstation clusters. llence the parallel algorithm has progressed

beyond the level of being solely an exerciss in computer science to become a powerful research tool

for investigating fluid phenomena. Finally, although it wi! be seen that we have produced a fair

amount of paraphernalia to parallelize just a single algorithm, it should be appreciated that the

AMR algorithm is itself sufficiently general to be applicable -to a lar,,e class of problems. And so

the method described here could be legitimately construed -a being a template for paralieliziny
block-structured, adaptive grid algorithmns.

'This research was supported b% the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the authors were in residence at the Institut. for toMuputer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, tlatnoton. V\ 23681.
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1 Introduction

Despite the enormous potential power offered by parallel computers, it is worth illustrating

that brute force calculations are unlikely to be of much use for solving problems that contain

disparate physical length scales. Consider the following example taken from the study of

detonation waves.

The usefulness of explosive materials stems from their ability to rapidly convert chemical

energy into heat energy. For example, a good solid explosive converts energy at a rate of the

order 1010 watts per square centimetre of its detonation front. Thus, as noted by Fickett

and Davis[71, a 20 m square detonation wave operates at a power level equal to all the power

the earth receives from the sun! For a given explosive, the rate of energy release essentially

depends on the speed with which a detonation wave is propagated. Traditionally, detonatior

speeds are determined from experiment. For solid explosives, a cylindrical charge known

as a rate-stick is ignited at one end, and the propagation speed is measured at the other

end. It is assumed that the length of the stick is sufficient to allow the detonation front

to reach its nominally steady speed. Note that the leading part of a detonation front is a

strong shock wave. As this wave propagates, so the explosive material is compressed and

thus heats up. This raise in temperature triggers a chemical reaction which releases large

amounts of energy in the form of heat. This energy release provides motive force for the

shock, and a balance is reached such that the chemical reaction supports a nominally steady

speed of shock propagation.

The simulation of a rate-stick experiment represents a formidable challenge. Since the

chemical reaction drives the shock wave, the simulation must be able to resolve the reaction

zone accurately. Results for model problems suggest that at least 10 mesh cells are needed

across the width of the reaction zone. Now for certain types of solid explosive the reaction

zone mia be only 0.02 mm in thickness, in which case the mesh spacing within the reaction

zone must be no larger than 0.002 amm. Given that a rate-stick might be 100 mn in length

and 100 mm in diameter, some 1.25 x 109 cells would be required for an axisymmetric flow

calculation on a uniform mesh. From the point of view of numerical accuracy, it is unlikely

that the detonation front could be propagated by more than one mesh cell per time step.

Consequently it would take somie 5 x 104 time steps for the detonation to travel the full

length of the rate-stick. Therefore the total workload for the simulation would be of the

order of 6.25 x i013 cell updates. Such a calculation would be absurd. A I Gflop computer

might be capable of l0' mieh updates per second, in which case the calculation would take

7293 days to run! Clearly, to make such a simulation viable, s-uliething other than a large

computer is required, hence the need for adaptive mesh refinement.

Adaptive mesh schemes attempt t- match dynamically the local resolution of the com-
putational grid fo the requirements of .he evolving flow solution. Thus very fine mesh cells



are restricted to those regions where they are needed, and elsewhere the computational

grid may be quite coarse. Such a strategy can dramatically reduce the computational effort

required to perform simulations of problems that contain disparate scales. Returning to our

detonation simulation, if the fine mesh cells were restricted to the vicinity of the react 'n

zone. only about 2.5 x 10 cells would be required for the simulation. In which case the

simulation would only require of the order of 1.25 x 1016 cell updates. Therefore, whereas

the uniform mesh simulation might take 723 das to run, the adaptive mesh simulation

would take just 208 minutes!

Because the potential savings are so large, the adoption of alumt any form of mesh

adaption, nio matter how naive, will pay some dividend. Consequently. a wide variety of

strategies have been utilized[i I]. For the simulation of complex shock wave phenomena.

ho,.ever, the AM . algorithmn first developed 1 Bergerfl, 2], and later by Quirktl3i. and by

Fischeri8j, has proved to le particularly effective. Despite its effectiveness, it is clear that
the long term usefulness of the AMR algorithm will depend on the extent to which it can

exploit parallel computing engines. The aim of this paper is to show that although the AMR

algorithm is quite involved, and as such it may be thought to be an unsuitable candidate

for parallelization, in actuality the algorithm has sufficient inherent parallelism so as to be

a good candidate for running on MIMD machines. Before proceeding further it should be

avknowledged that Berger and Saltzman[3j have already had some success using the AMA.

algorithm on a SIMD machine. But since this architecture necessitates an approach very

different from the one described here their work will not be considered further.

The rest of this paper is as organized follows. In Section 2 we present some background

information for the AMR algorithm together with some of the implementation details for

the original serial algorithm so that the reader might better understand the method of

parallelization which is described in Section 3. In Section 4 we present two sst of results

which demonstrate the worth of the new parallel version of AMR. The first set of results will

be of more interest to the computer scientist, for it deals with issues such as how well does

the algorithm scale. The second set of results will be of more interest to the applications

scientist, since it shows how the parallel algorithm might he used in earnest; results are

presented from a study of the Mach reflection of a detonation wave by a ramp. Lastly, in

Section 5 we present some conclusions that we have drawi: from this work.

2 The AMR Algorithm - A Primer

The AMA. algorithm is a general purpose mesh refinement scheme that has primarily been

used for studying shock wave phenomena[2, 6, 14J. The purpose of this section is to provide

a primer for those readers who are unfamiliar with the algorithm in order that they might

appreciate the issues that shaped our method of parallelization. It will soon become obvious
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that the AMR algorithm is quite involved, and so here we can do little more than describe
what constitutes the algorithm. No real attempt is made to describe why the algurithm
chooses to do things a certain way, nor how it actually performs certain tasks. Those
interested in the full details are strongly recommended to read Quirk's thesis[13]. The
exposition given here is broken down into four parts. First, we describe the grid structure
used by the algorithm, for all other aspects of the scheme stem from this structure. Second,
we outline the process which integrates the discretized flow solution contained by the grid

structure. Third, we outline the process whereby the grid dynamically adapts to the evolving
flow solution, and finally, we close this primer by presenting some pseudo-code fragments
which show how the AMR algorithm is organized.

2.1 Grid Structure

The AMR algorithm employs a hierarchical structure of embedded meshes to discretize the
flow domain. The bottom of the fierarchy, level 0, consists of a set of coarse mesh patches
which delineate the flow domain. Each of these mesh patches forms a logically rectangular
unit of cells. These patches are restricted such that it is possible to reference all their cells
by a single (i,j) co-ordinate system, CO, as shown in Figure 1. This restrictioa ensures
that there is continuity of grid lines between neighbouring patches and that if two patches
overlap one another then the regions of overlap are identical. These mesh patches form the
effective grid at level 0, Go, and we identify the kth patch by Go,t. Usually the terms mesh
and grid are synonymous, but throughout this work we reserve- the term mesh for a single
logically rectangular patch and the term grid for a collection of such patches.

i f. E I th Patch

4.1 .. Logical Coordi ate

Figure 1: .All meshes are fixed relative to a logical co-ordinate system.

The flow domain may be refined locally by embedding finer mesh patches into the coarse
grid at level 0 to form the next grid level within the hierarchy, GI. These embedded patches
are formed by linearly sub-dividing rectangular groups of coarse cells. The choice for the

number of sub-divisions along the edges of a coarse cell is arbitrary, but it must be the
same for every coarse cell that is refined. This restriction enables every mesh cell contained
at level 1 to be referenced by its own (i,j) co-ordinate system, C2 . In their turn, these
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embedded patches may contain even finer embedded patches which form the grid G2. 1 ins

process of refinement may be repeated as desired tip to some level lar The grids at

different levels within the hierarchy co-exist, for mderlying an embedded fine grid there is

a complete coarse grid and a complete coarse field solution, see Figere 2. Note that the

discretized flow solution is taken to be a cell-centred projection of the true solution.

41

Grid and density contours for all 3 grid levels

ia A
Grid and density c ntotirs for just the lower 2 grid levels

Figure 2: Coarse grids exist beneath fine grids.

In order to spcifv an arbitrary grid Structure G. it is necessary to supply the spatiaI

refilnement factors rI: and rj for each "rid level. i. together with the extent of each incsn

patch. GiA, using C? co-ordinates. The extent of a patch is just given by the co-ordiniateS

of its lower-left and upper-rfght cornters. AIR other details for the grid structure can be

gleaned from this basic data. For example. since a simple relationship exists hetween the

co-ordinate systems C- and C"_.,

(i:- U (- )
ii-t =.- + 1 and ji-t = - +1,

it is possible to determine which patches at level I - I underpin a given patch at level 1.
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For convenience we chose to store the following variables for the original serial imple-

mentation of the grid structure.

LMAX ',,r maximum grid level.

For each grid GI:
NGA(L) nG, number of gids contained by G,.
UP(L) Gp. grid index pointer.

rl(L) rll, Spatial refinement factor in I direction.

rJ(L) rJi, Spatial refinement factor in J direction.

For each mesh patch GI.k:
GRD = GP(L)+K

LGRID(GRD) Grid level for the mesh Gi k.
IMX(GRD) I M,-. Width of mesh Ghk.

JMX(GRD) JMl, Height of mesh G1,k.

JNf(GRD) 11.k, extent of mesh GIk using C7 co-ordinates.

JSf(GRD)
IEf(GRD)
IWf(CRD)
JNc(GRD) O, . extent of mesh G,¢ using C2+, co-ordinates.

JSc(GRD)
IEc(GRD)

IWc(GRD)

Note that the storage overheads are quite small, just I Ivariables are used for each patch.

Also note that we have assigned a unique index to each me..h patch; the grid index pointer

GP0 satisfies the recurr-nce relation. CpI+I = Gp + aGg. with Gpo set to zero. Considenng

that an average patch might contain upwards of 1000 cells, the overhead per cell is rnegligible-

A pair of nested DO loops is all that is required to run through the grid siructure and operate

on every mesh.

DO L=O,LMAX
DO K=INGA(L)

GRD = GP(L)+K

Operate on mesh G,,t

END DO
END DO

The discretized flow solution is stored in a series of large lists or heaps; a separate heap is

used for each variable. Each heap contains a contiguous set of blocks, one block for each

• .5c •• • a a a•I a



mesh, and each block consists of a contiguous set of storage elements with one eleneit for

each cell of the nesh. It is convenient to view a mesh patch as being surrounded b- a border

of duifiray cells, two cells deep. Thus (IM + 4) x (JM + 4) storage elements are required for

each mesh patch. The head of each block is found by indirection through the list, H2PTR,
thus the information for the iJth cell of the grid, GRD. would be located at,

H2PTR(GRD) + (I + 2) + (J + 1) * (IMX(GRD) + 4).

Note that the cells within a mesh patch are stored by rows. The following code fragment

would access every mesh cell in the data structure; the subroutine UNPACK.GRID comn-

putes the location pointer, IJ. for the cel (1. 1) and returns the stride lengths [bip and

Jbmp for the specified mesh.

DO L=0,LMAX

DO K=I,NGA(L)
GRD = CP(L)+K
CALL UNPACKGRID(GRD,I,Ij~bmpJbmp)

DO I=IIMX(GRD)
IJo = IJ
DO J=IJMX(GRD)

IJ contains a pointer to the data stored

for the ij'h cell of G.-

IJ - IJ +Jbmp
END DO
1J = IJo+Ibmp

END DO
END DO

END DO

Connectivity information which is needed along mesh boundaries, such as which mesh

patches abut a given patch, is also stored using linked lists, but owing to a lack of space no

details can be given here.

2.2 Flow Integration

In principle any cell-centred, flux-based scheme developed for a single topologically regular

mesh can form the basis for the flow integration process. The dumny cells which surround

each mash patch are the key to this flexibility. Thev effectively turn cell interfaces along

mesh boundaries into internal interfaces. Prior to integrating a grid, the dummy cells

ior every mesh patch contained by the grid are primed with data. Each mesh patch is
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then processed independently of every other mesh patch by some user supplied. black-box

integrator that never actually sees a boundary. This is possible because the data used

to prime the dummy cells is chosen such that the resultant numerical fluxes along mesh

boundaries are consistent with the various boundary conditions that have to be met.

Consider the fine-coarse boundary. shown in Figure 3. The AMR algorithm refines in

time as well as space. So for a refinement ratio of 4 say, a fine mesh patch will be integrated 4

times with 1 the size of the time step of its underlying coarse patch. The order of integration

is always from coarse to fine, thus the coarse patch flow solution may be interpolated in

space and time to provide Dirichlet boundary conditions for the fine patch. For multi-level

calculations, the integrations of the various separate grid levels are recursively interleaved

so as to minimize the time span over which interpolation is required.

+I * - ft

Z I-

I
Ownl__ SO - cu TO -Md n t e [ ! z -0 -# D | _

Figure 3: A fine-coarse internal boundary

Only two other types of mesh boundary exist: fine-fine boundaries, where the dummy

cells of one mesh patch exactly overlap the mesh cells of another patch at the same grid

level, in which case the appropriate data for the dummy cells is simply shovelled directly

from the relevant mesh cells; external boundaries, where the data for the dummy cells can

be inferred locally, for example, at a solid wall a simple reflection procedure is applied in

the usual manner.

The only other operators that form part of the AMR flow integration process are a

restriction operator which projects the flow solution contained by a fine mesh patch on to

its underlying coarse mesh patch; this is required for rrnsistency purposes. And a fixup
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operator which is applied along a fine-coarse boundary whenever a conservative intleg- iton
process is required. Essentially the fixup operator modifies the updated coarse cell solutions

along a fine-coarse boundary using the cumulative fluxes across the boundary as seen by

the fine -ttch during its sub-cycle of smaller integration time steps.

2.3 Elements of the Adaption Process

Consider a planar shock wave travelling down a duct. from left to right. Suppose a coarse

grid. Go. is used to discretize the duct and further suppose that an embedded grid, Gs

which is finer than Go covers the vicinity of the shock, see Figure 4 (a). Now, if the flow

solution on this grid structure is integrated forward in time, sooner or later the shock will

move to within one mesh cell of the right-hand edge of the grid G,. see Figure 4 (b). The

shock is about to run off the edge of the embedded mesh. At the very least this act will

cause the shock to smear to its natural width on the coame grid thus lowering the resolution

of the simulation. But if the shock is strong, it will also introduce spurious oscillations into

the flow solution. The AMR algorithm avoids such problems by dynamically adapting the

grid structure to the evolving flow. Here, the adaption process results in the embedded

grid, GI. gliding along the coarse gridi Go, so as to keep pace with the moving shock front.

The adaption process may be split loosely into three tasks. First, given a grid structure

and flow solution, regions of interest are identified. These regions will be refined, that is

they will be covered ky an embed-led grid. For our duct example the adaption proce looks

at the solution on the grid Co. Using some ad hoc monitor function such as the local density

gradient. the cells in the vicInity of the shock front are flagged for refinement as shown in

Figure 4 (c). Second, the flagged cells are grouped into clusters using a recursive, area

subdivide algorithm. Each of the clusters so produced is then covered by a single embedded

mesh patch. This grouping process results in a new grid structure, C. see Figure 4 (d).

Temporarily, as shown in Figure 4 (et there are now two grid structures, but the new

grid structure does not have a flow solution. Finally, the solution from the old structure is

transferred to the new one. see Figure 4 (f). If this sequence of tasks is performed repeatedly,

the embedded grid will shadow the moving shock front.

For multi-level calculations. a grid is adapted whenever it has completed its sub-cycle
of integrations relative to the coarse grid which underpins it. Thus the order of adaption

dovetails with the recursive order of integrating the different grid levels. Whenever it is

necessary to adapt more than one grid level at once, the adaption process always puoceeds

from fine to coarse. Following the adaption of a fine grid, the adaption proce s for the coar.e

gd at the next level down must ensure that any new coarse gd tlit may he pronuceA

fully supports the finer grid. This job of ensuring -proper nestin&' can only h done if the

order of adaption is from' fine to coarse.
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Figure 4: The adaption process tor r'Nck moving down a duct.

2.4 Pseudo-Code Fra

The following fragments of pseudo-code give an overview of the complete AMR algorithm.
We have chosen to present these fagments since they provide a succinct meanus of describing
the closely coupled nature of the AMR algorithn, It is not our intention that they be
cribbed verbatim in order to build a working code. Indeed, this would not be possible since
for r of clarit much clutter has been omitted.,

First a simple harness is required to drive the algorithm.

repeat{

Find-StableTime-Step
AMIR(O.1)

} until The-CalculationjsjFini-hed

This harness simply iterates until the computation is finished. For each iterition a sut of
stable time steps is computed just prior to calling the algorithm proper: a separate time

step at, is required for each grid Gxo The procedure AMR or-estrates the recvrsive
interleaving of the integrations ard adaption-s of the v rios gr"d imevei



Procedure AMR(INI

Jnte-grate-Grid(IN:)

if I c<~
Ini iallstConservative-Yixup(Q)

for Jft= tofli{
AMR(I + l1ft)

ApplyConservatwe-Fixupl + 1)

Project-Solution(l + 1)
setin(1W Ni
if Ni < rfg Adapti )

I
End Procedure

The paraneters I and N, specfy the grid leve, to be opented on and the integration sub-
cycling indx, respectively. The procedure Integrategrid advances the Ow solution held
on the grid G, forward by time A1 This is done by first priming the dummy cell for
each mesh patch contained in the grid via a call to the procedur Set.BC Note that the
sub-cig index , is required so as to be able to perform the correct interpolation in

time atftn-s boundary. Once all the dummy cells have been primed, a call to th

user-supplled route IutegrateMesh invoked for A nC patches contained by the gid
01. The remaining two routies form part of the conservatiwe fixup procedure, the details

of which need not concern us here.

Procedure IntegrateGrid(NL)
SeL-BCUL)

for k I to nGj 4
Integratt-Mnh( + k)
SaveGarse_FluxGp + &)
IntegiuttemluxeGpg +- k)

End Procedure

Fbgown the ininration of the pid C. It may he ae-way to recurively call the prr-dure

AMR S as to integrate the next finergrid. .. G+. for i ts rt4- sub-CVc. if not, a cal to

the routine ApplrConservative.iup uses the cumulative flx totalss to correct th
coase cells in Cq- which abut the grid G. Followinr which. for consistency; the solution
held on G is projected on to the coarse grid G-j. Once the subcycing is emplete fi a

particiur grid eel, it must be adapted: this is done- via a call to the procedure Adapt.
the inard of which should be dear ftrm having rad Section 23
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Procedure Adapt(11 )

Initialise_.G

for 1 = - I down to 11 {
Set-RefineFlags(l)

Ensure-ProperNesting(l)
Cluster(l)

I
TransferSolution

TransferDataStructure
BuildConnectivity(lI)

End Procedure

3 Method of Para!lelization

It should now be clear that the AMR algorithm cannot be distilled down to a small kernel

upon which one can simply try out various parallelizing strategies. And so it might apprat
that the algorithm is an unsuitable candidate for parallelization. Fortunately, however,

the algorithm exhibits a natural coarse grain parallelism in that individual mesh patches

may be processed largely in isolation from one another. We have concentrated our efforts

on exploiting this coarse grain parallelism using a message passing paradigm. Given this
strategy, one might assume that the re3ultant parallel implementation would not scale well

for large numbers of processors, but before reaching such a conclusion the following two
points should be considered carefully.

Firstly, by far the bulk of the computational effort for the AMR algorithm is spent not

on complex tasks such as the adaption process but on the simple task, logically speaking,

of integrating an isolated nesh patch. For the explicit integration methods that are cur-

rently in vogue for simulating shock wave phenomena, this computationally intensive task
exhibits much fine grain parallelism that could reasonably be expected to utilize additional
processors. In view of this, the ideal parallel computing engine for tile AMR algorithm

would probably be a hybrid MIMD/SIMD machine. The orchestration of the algorithm
would be performed using our message passing paradigm on MIMD processors, and the low

level "number crunching" would be performed locally on shared memory, SIMD processors

which executed code produced by a "smart" compiler. Interestingly, such hybrid machines
are already beginning to appear in the market place, an example being the CM-5 which is

produced by Thinking Machines Corporation[16].

Secondly, it should be appreciated that the AMR algorithm is designed for performing

very detailed numerical simulations; thus it is safe to assume that there are always a large

number of mesh patches to be processed. For example, the not overly large problem shown

in Figure 8 contains 318 patches. All in all, we feel that for practical purposes our scheme
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will not run into scaling difficulties, especially since economic strictures will, UjorL .Aten

than not, severely limit the numbers of processors that are available.

All the basic components of the AMR algorithm stem from its choice of grid system. In

turn, most of the implementation details for the algorithm stem from tle way in which the

grid system is coded. Therefore at the outset of designing the parallel implementation, we

decided that it was necessary to try and preserve, as far as was possible, the grid description

employed by the original serial version so as to be able to re-cycl, large portions of the

existing code. It later transpired that given a layer of "parallel machinery" we could actually

re-use all the old serial code in a new SPMD (Single Program Multiple Data) parallel code.

We now describe this machinery in some detail. First we give some of the implementation

details for the parallel grid structure and its associated data storage mechanism, since these

fixed the ease with which the parallelization was accomplished. Next we give an abstract

description for the message passing paradigm which underpins our parallel implementation.

Finally, we describe how the new parallel, message passing AMR algorithm is organized.

3.1 Parallel Grid Structure

In essenue, the serial code maintained a unique identifier for each mesh patch; thus the grid

structure could be described using a set of tables which were simply indexed using the mesh

identifiers. For the parallel implementation we have adopted the same approach. Firstly,

since we restrict ourselves to a coarse grain parallelism, we can postulate that a mesh patch

need only ever reside on a single processor. After all, as was already the case with the serial

implementation, a large patch can always be split up into two or more smaller patches.

Given the number of mesh patches on each processing node, it is possible to construct a set

of unique identifiers for the mesh patches in a grid structure distributed across one or more

processors. Thus it is possible to maintain a reversible mapping between some global mesh

identifier and the information pair consisting of: the identity of the node which owns the

patch referenced by the global identifier and the local index by which this node references

the patch;

global mesh identifier 4-' (processor id, local mesh identifier).

Secondly, given the small amount of information that is required to define the grid structure.

it is not unreasonable to store a local copy of the above mapping, together with the global

grid tables, on each processing node. For our imiplementation this storage overhead amounts

to just 52 bytes per niesh patch; although small. this overhead could be reduced to about 20

bytes, since for convenience we store certain derived variables. Now a larged sized simulation

might consist of 1024 mesh patches with an average sized patch of 50 x 50 cells. If this

problem were spread across 128 nodes. the local copy of the grid structure would amount to

less than 6% of the memory required to store the flow solution contained on a specific node

12



(a typical user-supplied flow solver might store between 8 and 10 double precision variables

for each mesh cell). Obviously having either a smaller average grid size or a larger number

of processors increases this storage overhead, but the strategy of keeping a local copy of the

global grid structure remains attractive. However, if at some future date the overhead ever

became prohibitively large, it would be possible to make use of the information contained

in the mesh extents so as to partition each of the global grid tables into some form of

distributed description table.

Since the grid data structure for the parallel implementation is effectively the same as

that for the old serial implementation, all of the original coding may be reused. For example,

the code fragment for accessing each cell of the grid structure, given on page 6, now has the

form:

DO L=0,LMAX
DO K=I,NGA(L)

GRD = GP(L)+K
if .nodeiownsgrid(GRD)

CALL UNPACK.GRID(GRD,1,I,IJ,Ibmp,Jbmp)
DO I=1,IMX(GRD)

Ijo = IJ
DO J=I,JMX(GRD)

IJ contains a pointer to the data stored

for the ifjh cell of GIj.

IJ = IJ +Jbmp

END DO
IJ = IJo+Ibmp

END DO
end.node If

END DO
END DO

The airectives if.node.owns-grid and endnode.if have simply been inserted into the orig-
inal code so as to ensure that an individual node only processes those mesh patches for

which it owns the flow solution. Note that the variables LMAX, NGA, GP, IMX and JMX

form part of the global grid tables and are therefore stored locally on each node. It should

also be noted that we only maintain one code for both the serial and the parallel versions of

the AMR algorithm. For the serial code, the above directives are simply mapped to blank

lines during a pre-processing phase of the compilation, while for the parallel code they are

substituted by a FORTRAN -IF . . - TH EN" construct which tests to see if the mesh patch

GRD is located on the node executing the code.



Another reason as to why the above code fragment may be so easily paralh liz,,,s lies

buried within the suiroutine UNPACKGRID. As was described in Section 2.1, all flow

variables are stored using a number of heaps, one heap for each variable, with the data

associated with the ij t h cell of the grid, GRD, being stored at the location

tt2PTR(GRD) + (I + 2) + (J + 1) * (IMX(GRD) + 4).

In the parallel implementation this location is now given by

It2PTR(lindex(GRD)) + (I + 2) + (1 + 1) * (IMX(GRD) + 4),

where the macro lindex returns the local mesh index corresponding to the global mesh

index, GRD. Thus each node maintains its own heap data storage in exactly the same way

as the serial code, but it only stores data for those patches for which it is deemed responsible.

Lastly, as before, we can recover the old serial code from the new parallel implementation

by simply in' ng the appropriate substitutions for the macro lindcz at compile time.

3.2 A Message Passing Paradigm

Our parallel implementation for the basic AMR algorithm is based upon a message passing

paradigm. At various junctures during run time, the access of data is identified as being

either local or non-local. For any access which is non-local, that is the required data lies

off-processor, the appropriate inter node communication tasks are first scheduled and then

later executed as a series of sends and receives. In this section we describe how these

inter node communications are orchestrated. Our message passing machinery relies only

on a limited functionality being available at the system level; the high level procedures

described here are supplemented by a small user supplied library (typ cally less titan two

hundred lines of code) which is dependent on the target platform. Thus we have been able

to ensure the portability of the AMR algorithm. To date, we have ported the algorithm

to a dedicated parallel computer (a 32 node iPSC/860 machine! using its native message

passing routines [9], and to the following workstation cluster environments: PVM (Parallel

Virtual Machine) [4], and APPL (Application Portable Parallel Library) [12].

Given our assumption that a mesh patch resides on just one processor, there are only a

few key tasks within the AMR algorithm that might necessitate accessing non-local data.

The most visible of these tasks is the job of priming the dummy cells which surround each

mesh patch. In the original serial implementation. whenever the grid structure changed,

the inter mesh connectivity was recomputed so as to build a schedule of the individual data

accesses required for priming the dumnmy cells of the grid. Since we store a local copy of

the grid description on each node, this procedure remains the same as that for the serial

implementation. Basically, the connectivity information is found by comparing the mesh
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extents between patches oil consecutive grid levels. Where appropriate, cxtornal boundary

information takes precedence over fic-fiuac information which in turn takes precedence

over finc-coarsc information. O.c- this data access schedule has been produced it may be

parsed so as to find which of its entries involve ne:l-local data. These entries are collected

and stored in a separate schedule. The following pseudo-code illustrates this procedure; it

builds the connectivity information for grid ievels I to l,,,zx

Procedure Build_-Cop iiectivity(l)

for I = 11 to 1,,,{

Reset..Bdy-Types(l)
Flag-CoarseBdy(l)
Flag-FineBdy(/)
Set-ExternalBdy(l)
Check-Nesting(1)

}
Build .OffProcessorBCSchedule(I)

End Procedure

The innards of the five procedures within the "for" loop are too involved to be described

here, but they are identical to those in the serial implementation except for the addition

of some if.node-owns-grid directives which ensure that a processor onl, works on those

patches which it owns; we remind the reader that full details of te AMi' algorithm have

been given elsewhere[13l.

The procedure BuildOff-ProcessorBCSchedule oversees th-, production of the

schedule of tasks which involve accessing non-local data. The resulting schedule simply

consists of a set of requests for information; each request identifies a processing node together

with a portion of a mesh owned by that processor which contains the desired data.

Procedure BuildOffProcessorBCSchedule(l)
for I = It to , {

ResetRequests(I)
fork= I touGti {

ifrodc_ou,ns.grid(Gpt + k)

BuildRequests(Gp + k)

for I = 11 to 1,1, {
Transmit.Requests(I)

E
End Procedure
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A global synchronization is performed in the procedure TransmitRequests, following

which, each separate request is sent to the specific processing node that will eventually

supply the off-prccessor data. When all the requests have been transmitted, each processing

node has two local lists. For each grid level, 1, the first list contains the details for nS! iters

of data that the node must send out when the dummy cells for GI are being primed, while

the second list contains the details for the nR items of data that the node is expecting to

receive during the priming process. Given these send and receive schedules, the procedure

which oversees the priming of the dummy cells for the grid, GI, has the form:

Procedure Set.BC(., Nt)
for k = I to nC: {

if node..ownsgrid(GpI + k)
Sel.-On.ProcessorBC(Nt, GpI + k)

end-node-if

SetOffProcessor.BC(l, Nt)

End Procedure

The call to Set-On-Proesor..BC performs all the data movements that involve just local

accesses, therefore this routine is the same as that for the serial implementation, while the

procedure SetOff-roceswrBC performs all the movements that involve non-local data.

Note that the integration, sub-cycling index, Nt, is required so that the correct interpolation

in time can be done at a fine.L'oarse boundary, see Section 2.2.

Procedure SetOff.Processor..BC(l, Nt)

Synchronize-Nodes

for item = I to nSi {
PackJ.MsgButgitem, Nt)
Node = Get.Node(item)
Snd..BCMsg(Node)

}
for item = I to nRt {

Wait-ForBCMsg

RevBC.Msg
UnpackMsgBuf(Nt)

I
End Procedure

The non-local data movements take place as follows. First, all the processing nodes are

synchronized, then each node works through its list of messages to send. Each separate

it essage is packed into a buffer and then sent to the appropriate node using same low-level.

sys em dependent routine. Once a node has sent out all its messages. it is ready to receive
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any incomning inessages that it inight be expecting. The order iii which the muessages arrive

is unimiportant. A node knows that it will be sent izR1 mnessages. so it simnjply waits for

that numnber of mnessages to arrive. Having received a mnessage, again via somne low-level,

systemn dependent routine, it simply (lerodes an identifier fromt within the mnessage so as

to determiine where the incomning. offprocessor dlata should be stored. Note that a similar

process of sends and receives mmav be used in the other tasks (principally the procedures
Project-Solution and Tram.ster-.Solution) that mnight want to access non-local data.

3.3 The Parallel AMR Algorithm

A,)art fromt a couple of additions mnadl to the adaption process, the basic organization of

the parallel AMR algorithin :entains the samne as that for the serial imiplenientation. %V0

now describe these additions, but first we siminly present the new version of the procedure

Adapt, c.f. time version given on page 11.

Procedure Adapt(11)
Initialize-C.G
for I =r~ - I down to 11

Set-eflne-Ylags(I)
Ensure-Proper-.Nesting(l)

Cluster(i)
Exchange..New-Extents(1)

Distribute.Grids(Im)
Transfer. Solution
Transfer..Data..Structure
Build.,Connectivity(Il)

End] Procedure

As has been describedl previously. time clustering process produces a set of mnesh extents

which describe the newly adapted grid C.However. for the p~arallel imipleimentation. the call

Cluster(I) will only p~rodutce a subset of the mecsh extents for Oi. since a node only processes

those p~atches which it owns. Thlereflorp foliowing the call to Cluster. it is ntecessarv to

perforin a global exchange. amongst the provessors, of the mnesh extents found locally. This

is fine with the call to Exchange-New -Extents. This global exchange allows each ntip

to assenmble the global grid description table for thle newly adapted gridl. 471.

Once each processor ha., the g-lohal description for the grid. sufficient imforination is

availe todtrumm oIte n eslz ;1.iatca,~ should b~e distributed so as to achieve- a

satisfactorv load-balancp amiong-st the lilfferent frc'signodes: this i6 done via the call

Distribute-.Grids. A.S yet. we (l not have any uniive-rsal. (list ribiltioll strategy that will

work well in all rases. an.tead, we hmave siply chosen one of several heuristic strategies
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depen-iing upon the particular flow problem that we are solving. The question of, how

should one distribute the mesh patches, remains an active area of research. However, our

algorithm is structured such that different distribution strategies may be swapped in and

out at will. Therefore, it matters little at this stage that we have no universal answer.

4 Numerical i suits and Discussion

We now present two sets of results which demonstrate the efficacy of our parallel imple-

mentation of the AMR algorithm. The first set of results concentrates on computer science

issues, such as how well does the algorithm scsde, and the second set shows how the algo-

rithm can be used as a tool to provide insight into basic fluid phenomena.

4.1 Performance Issues

In order to determine the performance of a parallel algorithm, it is common practice to

carry out at least one of the following twa studies. For varying numbers of processors, one

monitors the time taken to solve, either a fixed-sized problem, or a problem that is scaled

in such a way that the workload per processor remains constant. For reasons which will

follow, neither study is entirely satisfactory for determining the performanc of our parallel

AMR algorithm. Nevertheless, we have carried out both studies, the results of which we

present below. But first, we make the following observations.

Assuming a perfect load-balance amongst processors, effectively, it is only the time spent

on inter node communications that impacts on the performance of our algorithm. On the

scale of things, the overhead for looping over every mesh patch in the grid structure as is

done by the code fragment on page 13, rather than looping over just those patches that

a node owns, is negligible. Consequently, for a given number of processors, the efficiency

of the algorithm will be strongly related to the ratio of the amount of computation to the

amount of communication Therein lies the first difficulty for assessing the performance of

our algorithm- The AMR algorithm is a general purpose scheme which is not tied to any

one flow solver. Thus for a fixed grid structure, that is a fixed amount of communication,

the amount of computation can vary tremendously depending upon the application. Even

for a fixed application. one might have a choice of several different numerical schemes to

perform the "number crunching". For example, for the application shown in the next

section, depending on the circumstances, we have in the past used schemes that are 4-5

times more expensive than the one used for this paper. Despite such uncertainties, of one

thing we can be sure. using an expensive scheme will flatter any performance figures that

are measured. For that reason, all the performance figures given in this section are for the

flow solver used in the next section. Si-nce this solver Is one of the least expensive we use.

the performance figures given below may be considered as conservative estimates.
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Returning to our two performance studies, it is well known that a study in which the

flow problem is scaled, so as tc keep the computational load per processor constant, can

hide poor performance caused by either a large serial component in the algorithm under

test, or a large system overhead[1O]. Of the two studies, however, this one more accurately

reflects the way in which our algorithm is used in practice. Again. it is worth emphasizing

that the AMR algorithm is designed for performing very detailed simulations. Indeed, to

this end, the serial implementation has been quite successful for investigating inert shock
wave phenomena; a typical simulation might take a day to run on a high-end workstation

and require around 96 Mbytes of storage. Therein lies a second difficulty in assessing the

performance of our algorithm. The only dedicated parallel machine that is available to

us has a paltry 8 Mbytes of memory per node, of which maybe only half is available for

storage once the operating system and load module have had their share. Consequently

it is impossible to run a fixed-sized test problem of any consequence on such a machine.

After all, a problem that would fit into 4 Mbytes might take only 30 minutes to run on a
workstation. What is the merit in solving this in under 30 seconds on a massively parallel

machine, if the results are going to take a day to analyze!

When investigating fluid phenomena our no.us operandi, in common with many of our

colleagues. is to scale the problem size such that, given the ailable computing resources,

the results are delivcred within some acceptable time limit. Since we utilize colleagues'

machines during off-hours for our workstation clusters, typically our problems are scaled to

match one of two time slots, either the 12 hours available during a week night, or the 40

odd hours available over a weekend; the simulation shown in Figure 8 was performed in one

such weekend time slot.

Despite our misgivings, we have performed the following fixed-sized performance study.

Thirty two horizontal stripes, which are stacked one above the other, are used to discretize

a duct along which a detonation wave is propagated. Each stripe consists of 50 by 4 coarse

cells and contains one level of adaption, with a refinement ratio of 4, so as to improve

the resolution of the detonation wave. Tests were run on a 32 node iPSC/860 hypercube

machine. and two workstation clusters: one of 16 SuN ELCs. and one of 8 SuN& SPARc Is;

both clusters used an ethernet ring. For the workstation tests we utilized the APPLi2]

message passing library. If there were fewer nodes than stripes, the stripes were distributed

in blocks. For example, four neighbouring stripes would be distributed on each node of an

8 node cluster.

For each of the parallel environments tested, Figure 5 shows a plot of the measured

efficiency against the numbers of nodes used to run the fixed-sized problem. Here the

efficiency is given by ihe ratio of the wall clock time taken to execute the problem on a

single node, to the wall ciock time taken to execute the problem on n processors scaled

n times. Note that for the workstation clusters there is a sharp drop in efficiency across
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the test range, while for the hypercube the efficiency only drops below 94% for 32 nodes.

Since the identical, load-balanced problem was executed in each case, in all probability, the

low communications bandwidth of the ethernet ring became saturated whereas the scalable,

high bandwidth network used by the hypercube did not. To test this hypothesis, a simple

test program was run which attempted to pass a large number of varying sized messages

around a ring of workstations, as quickly as was possible. This test represents a crude

approximation to the communication process during the priming of the dummy cells. The

results from this test are shown in Figure 6, they indicate that the bandwidth of our ethernet

ring is just 1 Mbyte/sec. The two vertical lines show the range of typical message sizes used

during the priming process, from which it can be seen that the ethernet ring would indeed

become saturated. Note that it takes just two machines to saturate the network! Now we

have observed a ten-fold increase in bandwidth when switching from ethernet to fibre optic

FDDI. This increase in bandwidth would significantly delay the point at which network

saturation takes place. Unfortunately, our workstation clusters have not yet been upgraded

to take advantage of this improved technology.
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Figure 5: Measured efficiencies for the fixed-sized test problem.
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Figure 6: Ethernet bandwidth as a function of both miessage size and cluster size.
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As an aside, it should be noted that every effort was made to find the best set of

compile options for a given machine so as not to artificially improve the performance figures

by needlessly increasing the computation time relative to the communication time. For

example, on a SUN SPARC10 our selection of compile switches gives a CPU saving of 26%

compared to a naive optimization using just the "-03" compilation switch.

Given the available bandwidth, the poor performance of the workstation clusters merely

suggests that the ratio of computat,)n to communication was too small for the fixed-sized

problem. But this ratio was set artLicially small just so the problem would fit on a single

node of the hypercube. A more rcalistic ratio can be obtained by running a scaled problem

were each node processes at most one stripe; the more nodes, the more stripes that are

used for the test. We have carried out a performance study for our algorithm on such a

scaled problem using a stripe which consisted of one coarse mesh of 100 by 8 cells that

contained two levels of refinement, each with a refinement ratio of 4. Figure 7 shows the

results of this study. Here the efficiency is defined as the ratio of the serial wall clock time

to the parallel wall clock time. Once again, the algorithm performs extremely well on the

hypercube. Note that the efficiency is still above 97% for 32 nodes. This time, however,

the drop-off in efficiency for the workstation clusters has reached acceptable levels. For

example, either 16 ELCs or 8 SPARc 10s may be used at over 80% efficiency. Again we

would like to emphasize that this scaled problem is more representative of how we use the

AMR algorithm than is the fixed-sized problem. Therefore, as will be shown in the next

section, the above efficiencies are readily obtainable on real problems.
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Figure 7: Measured efficiencies for the scaled test problem.

In summary, the above results sho% - that the AMR algorithm scales extremely well on

a dedicated paralle! machine that offers a scalable data network. But more importantly.

perhaps, the algorithm can deliver a good performance on workstation clusters, even when

communications are via ethernet. With the tenfold increase in bandwidth observed with

21



fibre optic connections, it would not be unreasonable to expect to be able to use more than

20 machines at well over 80% efficiency, provided that the problem was reasonably well load-
balanced. Given that there is a trend towards vendors offering multi-processor workstations,

the effective number of nodes that could be used efficiently would reach three figures. Fur-

ther advances in network technology will increase this figure still further. Certainly, for the

sorts of application for which the AMR algorithm is intended, there is little danger in the

foreseeable future of it performing poorly simply because of a surfeit of processing nodes.

Before moving on to the next section it is worth mentioning one practical advantage of

our strategy of attacking the coarse grain pamalelism within the AMR algorithm. Given

the mplexity of the algorithm, one can never be sure that a specific implementation is
entirely free of bugs. However, through several years of use, it is clear that our serial

implementation has reached a stage whereby it might be considered safe to assume that

any remaining bugs are benign. Since our parallel implementation performs the same set

of operations on the same set of data as the serial version, there is no reason why it should

not give the same results, even down to round-off errors. After some vigorous debugging we

can claim that this is indeed the case. If we had tackled a finer grain parallelism from the

outset, we probably would not have been able to utilize such a stringent quality control test

as checking for zero differences in round-off. Admittedly, one expects a good algorithm to

be insensitive to round-off errors, and therefore we might well have been content to settle
for having just very small discrepancies between the results produced by two nominaly

equivalent implementations of our algorithm. But, based upon previous experiences, there
would always remain a nagging doubt that some subtle bug had been left uncovered. We

are now well placed to extend our work by tackling the fine grain parallelism within a

mesh patch. Given the relative simplicity, logically speaking, of the tasks performed within

a patch, there would be no merit in trying to maintain the same stringent control over

round-off errors for this future work.

4.2 A "Real World" Application

Although classically modelled as a quasi one-.1mensional structure consisting of an inert

shock front followed by a reaction zone, a a'et.v'ation wave, in marked contrast to an ordinary
shock wave, can be highly two-dimensional in nature[7]; a detonation front rarely remains

planar. Over the years. experiments have revealed that a detonation front often supports
a complex system of transverse waves which trace out a -fish-scale" pattern, thus giving

rise to a characteristic length (the height of one scale) known as the detonation cell size.

Recently, modern numerical schemes have !seen utilized in an attempt to improve our general

understanding of this phenomena[5. 14]. Although such numerical simulations have been

reasonably successful, it is clear that they have a number of shortcomings. For example.
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whereas most calculations have been for fronts which are just one or two ce!ls in length, a

realistically sized problem would necessitate using a front that contained tens of cells. This

shortcoming is an indication of the expense of such simulations. Today, however. sinsg our

parallel AMR algorithm running on a relatively small number of workstations. we are able

to perform routine calculations that involve ten or more detonation cells.

Figure 8 shows results from one such simulation, a detonation wave reflecting from a 200
rdmp. The left-hand plate shows a single Schlieren-type snapshot which clearly shows the

expected Mach reflection flow pattern, while the right-hand plate shows the characteristic

"fish-scale pattern traced out by the tranzverse waves. This last plate is essentially a smear

image of the vorticity field as the detonation front interacts with the ramp, and it is therefore

comparable to the soot trace records that arc produced experimentally7; the details for

how we produce numerical soot traces are given elsewhere[15J. Note that the lighter a point

within the image, the higher the peak vorticity that has passed that point in space, and so

the edges of the "fish-scales" correspond to the tracks traced out by the numerous triple

points along the length of the detonation front. Also note that the detonation cell size

behind the Mach stein is considerably smaller than that behind the incident front. Again

this is in accordance with e.perimental observation. Since the Mach stem moves normal

to the ramp surface, it must be travelling faster than the incident front; thus the ratio of

its speed to the Chapman-Jouguet velocity (the minimum sustainable detonation speed) is
also higher than that of the incident front. Generally speaking, the higher this ratio, the

more stable a detonation front becomes and so its cell size decreases.

Given the performance results that were presented in the previous section, it would serve

no purpose here to present further detailed figures for the ramp simulation. Suffice it to

say, such simulations have been run for up to 40 consecutive hours on eight SUN SPARcl0
workstations, during which sustained efficiencies of over 80% were achieved, despite the fact

that all communications were via ethernet rather than fibre optic links. While we do note a

few specific details as to how the ramp calculation was performed, it should be recognized

that this calculation forms part of a careful investigation into the Mach reflection process

of detonation waves, and therefore a full account will appear in the literature in due course.

The ramp calculation employed a four level adaptive grid. The coarsest grid contained

400 by 18 cells, and a further three levels, each with a refinement rztio of 4, were used to
resolve the details of the flow. Thus the finest grid level is equivalent to a uniform mesh of

2.5600 by 1152 cells. The so-called reactive Euler equations were used to model the flow[4J.

In essence, a single reactant A is converted to a single product B by a one-step irreversible
chemical reaction which is governed by Arrhenius kinetics. Four parameters dictate the

basic behaviour of the detonation wave. These are: a non-dimens-ional activation energy, E,

a non-dimensional heat release. Q, the ratio of specific heats. -, and the degree of overdrive,

f, for the detonation wave. For the case presented here, these parameters took the values
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Flgute 8: Schlieten-type image and numerica soot tiac for a detonation wave reflecting
ftrm a 200 ramp. Key: IS., Incident Shock ats., Reflected Shock: M.S.. Mach S tem; T.P..

Tiiple Point.
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For caption, see page opposite.
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10, 50, 1.2 and 1.2, respectively. The computation was started using the exact, steady ZND
wave solution[7]. The resolution of the computational mesh may be gauged by the fact

that the finest grid level provides 15 mesh cells per reaction half-length, L1 , the distance
2

measured from the detonation front by which half the reactants are consumed in the steady

ZND solution. To seed the transverse wave structure, a sinusoidal perturbation was added

to the pre-exponential factor in the Arrhenius rate term for the first few time steps. The

wavelength of the perturbation was chosen to be close to the transverse spacing predicted

by linear theory[5]; thus to get 10 detonation cells along the length of the incident front

the channel width was taken to be 76.8 reaction half-lengths. The operator split version of

Roe's scheme which has been described by Clarke et a/.[6] was used to integrate the flow,

albeit with the inclusion of some additional dissipation so to avoid the failings reported by

Quirk[14]. The bulk of the simulation was spent propagating the incident wave to the foot

of the ramp, a distance of some 15 channel widths, so as to be sure that the detonation

front was well settled before it interacted with the ramp.

We close this section with a reminder that the AMR algorithm is not tied to any one

application. Admittedly the theme throughout this paper has been one of detonation flows,

but, there is no reason why our AMR machinery cannot be brought to bear on an entirely

different application.

5 Conclusions

A method has been presented which describes how Quirk's adaptive mesh refinement algo-

rithm (AMR) may be parallelized. This algorithm is sufficiently general that the method of

parallelization can be taken as a template for a whole class of block-structured, mesh refine-

ment schemes. The method of parallelization exploits the natural coarse grain parallelism

found in the AMR algorithm so as to leave the original serial algorithm virtually intact.

Moreover, since it makes no demands on the target parallel hardware other than assuming

some simple message passing capability, portability across a range of platforms is ensured.

To date we have demonstrated that the parallel algorithm runs on both workstation clusters

and on an Intel hypercube system.

The robustness of the parallel AMR algorithm is such that it is now run routinely

on workstation clusters for large scale simulations of detonation phenomena. A typical

calculation might utilize 8 SUN SPARClOs for up to forty hours. Efficiencies of over 80% are

reached for these computations even when inter-workstation communication is via ethernet

rather than fibre optic links. Such high efficiencies stem from the block-structured nature

of the AMR algorithm; by dealing with blocks of cells rather than individual cells one

markedly improves the ratio of computation to communication, thus alleviating sonie of the

performance problems associated with using low speed networks.
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Thus far we have circumvented tlhe thorny issue of load balancing. For our detonation

simulations, although the computational grid is adapting to the flow solution, it does so

in a fashion which allows the load balancing to be fixed as a one-off at the start of the

calculation. At this juncture, considering the large number of adaptions that take place in

a typical simulation, we are not hopeful that a general purpose load balancing procedure

will be found that is cheap enough to be used during the course of a calculation. Instead,

we envisage employing heuristic procedures nuch as is done with mesh refinement monitor

functions. Experience shows that such refinement functions work well inl practice, so there

is no reason to believe that heuristic load balancing functions won't also work well. Further

work is l)ianned to see whether or not this optimism is misplaced.

Lastly, it is worth noting that workstation clusters provide a relatively robust and cheap

environment in which to develop paralle: algorithms. While large purpose-built parallel

machines may offer unrivaled computational power, they do not always come coml)lete with

stable operating systems! We were able to design and test the parallel AMR algorithl

on a reliable system of workstations. Then, safe in the knowledge that tihe algorithm was

working satisfactorily, it took less than one mornings work to port the code to the Intel

hypercube. It wouid doubtless have been a more traumatic exercise to develop the parallel

AMR algorithm directly on the hypercube.
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